
Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

209

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

SAS - an experimental tool for dynamic
program structure acquisition and analysis

V. Callaghan and K. Barker
Department of Electronic and Electrical Engineering,
The University,
Mappin Street,
Sheffield SI 3JD, UK

This paper describes an experimental microprocessor-based tool, SAS (Software Analysis
System), which has been developed to enable dynamic program structure acquisition and
analysis to be made on digital computing machines.

The system uses a universal hardware extraction technique to obtain branch vectors
which are used to analyse and display the structure of the software being monitored. A
display, especially designed for small instrument screens, is used to present this structure.
Emphasis has been directed towards development of methods with high degrees of
machine independence and it is envisaged that such techniques could either be integrated
into the new generation of logic analysers or form part of a universal tool for computer
programmers. Initial research has been guided towards the application of these techniques
to compiled, assembled, or machine coded systems and in this context a number of
techniques are described.

The motivation for this research has been provided by the present escalating software
costs, in particular those in post development which account for approximately 75% of the
total software expenditure.

1. Introduction

Software is presently dominating the cost of computing systems. The price of computer
hardware is falling at a rate of approximately 28 % p.a. whilst programmer productivity is
rising at only 4-7% p.a. This indicates an escalating dominance of software costs on computer
systems (Allison, 1980) (see Figure 1). The software demand growth rate is estimated to be in
the order of 21-23% p.a. whilst the software labour force and its productivity per individual are
producing a combined growth rate of only 11.5-17% p.a. (Boehm, 1976).

Figure 1. Life-cycle costs of computer systems.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

210

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Recent American government figures indicate that, if this trend continues, by 1990 there will be
a shortage of between 1-2 million programmers (Schindler, 1981). One solution to this problem
would be to substantially raise the level of programmers’ productivity. It is this environment
which is motivating the research for new tools and techniques to assist the programmer in his
efforts throughout the software life cycle.

1.1 Software life cycle

The life cycle of a program may be envisaged as comprising two stages; namely, development
and maintenance. Software development accounts for approximately 25% of the total cost, the
remainder being attributed to maintenance (Mills, 1980). An estimate of the order of
expenditure involved is provided by Boehm who reckoned that the annual cost of software in
the United States during 1976 was some 20 billion dollars (Boehm, 1976).

1.2 Software maintenance

The term ‘maintenance’ (Munson, 1981) is misleading because when used in this context, it
refers to the following post-delivery activities defined by Swanson (Munson, 1981; Swanson,
1976) as:

(i) Corrective—fixing a pre-existing error (in either specification or code).
(ii) Adaptive—modifying the software to accommodate environment change.
(iii) Perfective—improving or augmenting the performing capabilities.

Boehm (1976) has defined maintenance as ‘the process of modifying existing operational
software whilst leaving its primary functions intact’. These post-delivery activities usually
continue for considerably longer periods than their corresponding development time thus
accounting for the high maintenance overheads. Reducing any of the activities defined by
Swanson can thus potentially have a profound influence on software expenditure.
Unfortunately, as Boehm (Boehm, 1976) has stated ‘Despite its size, software maintenance is a
highly neglected activity’. SAS has been constructed to address the problem of maintenance by
providing a tool which can counter the programmers’ intrinsic intellectual limitations (Gries,
1980) by, in the first instance, restricting software complexity and enforcing adherence to
structural constructs during software development and quality assurance checks and, in the
second instance, supporting maintenance by providing an aid for deciphering poorly
documented or complex code.

1.3 Present technology

The main impetus for innovation and development of program execution monitoring tools has
been provided by companies with a commercial interest (Marshall, 1978). Results of such
research usually manifest themselves in marketed products. Reported research is sparse; a fact
supported by a recent survey (Plattoer & Nievergelt, 1981) which reports, ‘program execution
monitoring has been a neglected research topic’ and concludes by stating ‘program execution
monitoring has not received attention commensurate to its practical importance'.

1.3.1 Commercial systems. Commercially available tools which provide facilities for program
execution monitoring are; (1) performance monitors, (ii) logic analysers and (iii) development-
emulation systems.

Performance monitors (Nutt, 1975) are normally used on computer systems which
manage such facilities as multi-user, virtual storage and multiprogramming. They gather and
analyse information concerning the monitored system by either timing or counting the
occurrence of specific events or conditions. Activities monitored by these systems include CPU
activity, channel activity and I/O activity. Analysis of this data is then used to (i) investigate

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

211

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

resource utilization, (ii) determine the characteristics of the job load, (iii) remove bottlenecks
and (iv) tune software and gather data for system monitoring. Due to the large quantity of data
produced by these systems, the information is normally gathered and presented statistically.
These tools are usually used on large systems and cost in the region of £40,000 to £150,000.

Logic analysers (Marshall, 1978) are tools which log absolute time sequential data
present on a number of parallel channels. Data acquisition may usually be started on the
occurrence of a pre-specified combinational trigger and continues until the analyser memory is
full. Data is normally displayed either as a timing diagram, state map or as a table. A current
trend by manufacturers is the adaptation of logic analysers to directly support program
development by including facilities such as disassemblers. Typically, a logic analyser may
contain 24 channels, a memory depth of 256 words, an operating speed of 100 MHz and cost
between £4000-£8000.

Development systems and hardware emulators (Krummel, 1977) include facilities such
as dynamic tracing and breakpoint execution to aid program development and debugging.
Although many systems implement these features in software, some systems, particularly
emulators, provide hardware for this purpose. Professional development and emulation systems
cost in the region of £5000 to £25,000.

1.3.2 Research activities. Research activities concerned with program execution monitoring are
reported in an early paper by Stockham (Stockham, 1965) and a recent paper by Plattner &
Nievergelt (1981). Fryer (1973) has described a dumb system, ‘The Memory Bus Monitor’
which utilizes the stream of addresses and data travelling the memory bus in conjunction with
hardware comparators, timers and counters. These provide such measures as branch ratio,
routine timing and variable behaviour. An eight-word shift register provides a limited trace
facility. Lemon (1979) describes an improved version of the monitor, ‘SOVAC’, which uses a
PDP-l 1/34 to support a graphic terminal, simplify the user interface and provide an analysis
capability. IBM’s recent reports have described a ‘Programmable Map and Trace Instrument—
PMATI’ (Lloyd et a!., 1980) and a ‘Program Counter Sampling Tool’ (Armbruster et al.,
1978). PMATI maps and traces program execution by interfacing to the system address bus.
The trace function records the sequential stream of address whilst the mapping facility is
implemented by associating a bit with each possible address occurrence. The program counter
sampling tool periodically samples the instruction counter and increments a counter associated
with a window which the value of the program counter lies between. The window widths and
address space coverage are variable whilst the number of counters and windows is fixed at
4096. In applications where the loss of time sequential data is not of significance an advantage
of increased sampling periods may be achieved by use of this technique. A debugging tool ‘The
Program Tracer’ (Antoine et al., 1979) interfaces to the system address, data and control buses.
Upon triggering it ‘selectively acquires data from the monitored buses according to a set of
initialization conditions. The selective acquisition capability both differentiates it from, and
provides a sizeable data reduction over the conventional logic analysis techniques. Results are
presented as text on either a printer or VDU. Versions for tracing the ITT 3202, Intel 8085 and
the RCA 1802 processors have been reported.

1.3.2 Summary. The majority of these tools and techniques use the monitored system's buses to
extract direct program execution data in the form of real time traces. As such, they are
primarily debugging tools. Performance monitors extract indirect data concerning the effects of
the program execution from various system test points and perform analysis to produce certain
measures on characteristics of the software. SAS differs from these tools by directly extracting
a fundamental structural program property, performing analysis and presenting the programmer
with data concerning the program’s complexity and structure.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

212

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

2. The SAS system

2.1 Physical description

SAS consists of a cabinet which houses two single sided, double density 8 in. disc drives, a
power supply, cooling unit and a 12-slot rack containing:

(i) a CPU board;
(ii) a disc controller board;
(iii) two structure table RAM boards;
(iv) an EPROM system software board;
(v) a structure monitor board;
(vi) a control board.

System peripherals include a VDU, a printer, a colour monitor and a data acquisition probe set.

2.2 Principle of operation

Figure 2 shows a block diagram of the SAS system. The personality adaptor interfaces the
program counter or memory address lines of the system under test to the structure monitor
which extracts branch vectors. These vectors are stored in one of two memory blocks, structure
tables 1 and 2, which in turn may be operated upon, displayed, or stored on the system discs.

2.2.1 Structure acquisition principle. The technique to be described is based upon the principle
that branches in compiled and assembled code correspond directly to deviations from the
normal sequential incrementation process of the program counter. Dynamically executed
branches can therefore be logged during program execution by storing two words which
correspond to the value of the program counter immediately prior and following a non-
incrementally sequential update. It is then possible to reconstruct the structural properties of the
executing program in the form of a directed graph from the table.

Figure 2. Schematic Diagram of SAS.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

213

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Figure 3 shows a block diagram of the structure acquisition scheme. A probe unit is connected
to the program counter chip set, computer backplane or a microprocessor, depending on
availability. These probes fetch the program counter outputs including clock qualificatory
signals through line driving and receiving circuits to the structure monitor. In the structure
monitor the successive addresses are clocked into a two-bit shift register which enable the time
adjacent values of the instruction address register to be analysed for a branch by the succeeding
circuitry. Analysis of branch conditions is performed by comparing the shift register word
corresponding to the instruction address register’s latest value to its former value plus one. An
inequality in this comparison indicates that a branch has taken place and a sequence is initiated
which causes the two non-sequential values of the program counter to be stored in a memory-
based structure table.

Figure 3. Structure acquisition scheme

2.2.2 Structure display principle. The technique utilized to display the program’s dynamic
structure is based upon a directed graph and has been particularly devised for use in
conjunction with small instrument display screens. Essentially it is a circle, the circumference
of which is calibrated to correspond to the portion of memory being monitored. Branches in the
program’s normal sequential flow are depicted as chords on the circle. A clockwise rotation
corresponds to the normal positive sequential incrementation process of the program counter.
On a colour display the chords are colour coded to indicate the direction of the branch, the
execution frequency being impressed as the intensity of the chord. Figure 4 illustrates a
measurement being made on a Texas Instruments TM990/101 which has a simple program
containing three loops, two of which are nested and a subroutine call.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

214

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Figure 4. Structure map

2.2.3 Structure analysis principles. SAS provides a set of software-implemented algorithms
which augment the hardware-based acquisition and display system by providing a means of
testing, modifying and presenting the acquired branch vectors in a manner which may be
readily interpreted.

1 AC Analyse Complexity 35 FO Frequency Operator
2 AO And Operator 36 GP Get Program
3 AZ Acquisition on Zero 37 G1 Get 1st Structure Table
4 AO Acquisition on One 38 G2 Get 2nd Structure Table
5 CB Colour Bar Generator 39 LV List Vectors
6 CD Continuously Display Vectors 40 MA Magnitude Acquisition
7 CM Clear Memory 41 MO Magnitude Operator
8 CP Continually Print TM990 Vectors 42 PC Program Cru Bits
9 CS Clear Screen 43 PE Print Expansion Parameters
10 CT Configure TM990 Personality Card 44 RE Reset Expansion
11 DC Draw Circle 45 RI Retrieve Image
12 DD Disc Directory 46 RM Return to Monitor
13 DI Display Image 47 SB Star Burst
14 DM Display Mark 48 SC Set Colour Table
15 DO Data Operator 49 SV Sort Vectors
16 DP Dump Program 50 TM Test Memory
17 DV Display Vectors 51 TO Texas Operator
18 D1 Dump 1st Structure Table 52 TW Transfer Word Block
19 D2 Dump 2nd Structure Table 53 WA Window Acquisition
20 ED Expand Display 54 WL Wandering Line
21 EO ExOr Operator 55 WO Window Operator
22-33 E 'x' Execute Program at F'x' 00 56 WZ Wand Zero Acquisition
34 FD Format Disc 57 WO Wand One Acquisition

Figure 5. SAS Command Index

A complete list of SAS commands and algorithms is provided in Figure 5. These commands
may be divided into three classes, namely, test, control and operator commands. Test
commands are concerned with verifying various functional elements in SAS itself such as the
structure tables and display (e.g. TM, SB). Control commands supervise the acquisition,
movement, storage and display of data within SAS (e.g. DP, DV). Operator commands are
responsible for analysis of the data usually operating on data stored in the structure tables.

The structure tables are the nucleus of the analysis system (see Figure 6). All data which is
communicated to the user is obtained directly from the structure tables. Data intended to be
ignored by SAS or the user is nulled in these tables. This principle is utilized by the analytical

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

215

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

routines which null the vectors in locations which have been either eliminated or made
redundant.

Figure 6. The structure tables are the nucleus of the software

Five main analysis techniques are employed in SAS which are described in the following

paragraphs.
(i) Vector magnitude, frequency and window filtering. Filtering in the SAS context, refers

to the elimination of branch vectors which do not conform to prescribed conditions.
Two types of filtering process are employed in SAS; pre-storage and post-storage. Pre-
storage filters examine and eliminate, if necessary, the branch vectors as they are
acquired before storage. They can be implemented in either hardware or software. Post-
storage filters process the branch vectors stored in the structure tables, eliminated
vectors being set to zero. Data null vectors are ignored by the output processors of
SAS.
Magnitude filtering. These algorithms such as MA (pre-storage), and MO (post-
storage) determine the magnitude of each vector and compare this to a magnitude
window supplied by the user. Vectors with a magnitude not between the limits set by
the window are nulled.
Frequency filtering. Frequency filtering refers to the elimination of vectors from a
specified table whose frequency of occurrence lies outside the boundaries of a window
supplied by the user. Intrinsically, frequency filtering can be only of a post storage
nature, as pre-storage implementation would imply prior knowledge of vectors yet
ungenerated. An example of this filter is the FO algorithm.
Window filtering. The elimination of vectors whose source or destination lies outside a
user specified window is referred to as window filtering. WA is a pre-storage
implementation of this algorithm whilst WO is a post-storage version.

(ii) Complexity and structure analysis. Computer programs may be assembled using
arbitrary control structures. SAS extracts the branch vectors dynamically from the
program whilst it is running and uses them to fabricate a diagram which mirrors the
program structure. The freedom allowed in being able to use arbitrary control
constructs can lead to the production of highly complex programs which are difficult to
understand, maintain, adapt and test. To combat this type of complexity, a methodology
which allows the programmer to build programs from only a limited set of structures is
often adopted. This type of methodology is already in frequent use amongst high level
language programmers who commonly use the three constructs; linear sequence,
selection and iteration (Jensen & Williams, 1981). Unlike high level languages whose

Transfer,
compare,
operate
on data

Structure
table 1

Structure
table 2

Data

acquisition

Display or

print data

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

216

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

algorithmic implementations are based on the virtual machine reflected by the
language, low level assembly languages’ algorithmic implementations depend on the
actual machine. As such the use of GOTOs or absolute branches is unavoidable in all
but trivial assembly or machine code programs. Further, it is felt to gain many of the
intrinsic advantages of particular machines a more flexible structuring criterion is
required. The approach on SAS is to allow the user the ultimate choice of which
structure criteria is appropriate to apply by placing the structure analysis routines in
RAM which is supported by the system discs and called by the EF command. A
measure of the conformity of a program to specified constructs is presented as the
number of instances in which these programming constructs are violated.

Predicate branching in the control flow of computer programs can potentially create
control structures which are beyond the management intellect of program development,
maintenance and adaption engineers (Gries, 1980, Mills. 1980). Forward predicate
branching causes the number of distinct control paths to increase in proportion to 2
where n is the number of predicates, whilst backwards branching, can cause an infinite
number of potential paths. Thus, even small programs may contain a number of control
paths which is beyond the normal intellectual capacity of an individual (Gries, 1980). A
measure for this type of complexity has been devised by Thomas McCabe (1976, 1978)
and is known as cyclomatic complexity. This approach uses the cyclomatic number
derived from graph theory as a measure. The cyclomatic number is the number of
independent paths existing within a program module which, when taken in
combination, generate all paths and is expressed as:

V(G)=e—n+2p
where

V(G) x cyclomatic number (complexity measure);
e = number of edges (branch vectors);
n = number of vertices (branch vector nodes);
p = number of connected components (modules).

McCabe suggests a limit of 10 as representing an optimum level of complexity. This
algorithm is called on SAS by the command AC.

(iii) Instruction, data separation. A need to separate program data from instruction
addresses occurs in two main instances; program counter tracking which contains data
words embedded in the program memory field and composite instruction- data tracking
which gather data fields from both inside and outside the program memory area. The
latter situation would arise if measurements were made on a microprocessor without
instruction fetch cycle qualifying signals, whilst the former occurs on systems with
such signals. Program counter tracking systems effectively branch around data blocks
producing pseudo branch vectors which are not part of the program logic flow. Some
processors treat the additional words in multiple word instructions as data words, thus
inducing pseudo branch vectors. These false branch instructions are eliminated by
using the ‘not instruction fetch’ qualifying signal to produce a data track and negating
branch vectors, which correspond to these data domains. Composite instruction-data
tracking results in the generation of mixed data fields and instruction branch vectors.
Intrinsically, this system eliminates the multiple instruction word pseudo branch
problem encountered in the former case. The most successful solution to separating the
instruction and data activity is to window filter the program memory area, the
disadvantage being that this requires some prior knowledge of the program being run.
This data operation is called by the SAS command DO.

(iv) Event correlation. A requirement to correlate sections of code with certain events is
evident when programs are being maintained or adapted, in particular when
accompanying documentation is either not available or inadequate. In such
circumstances, the correlation wand of SAS may be used. Essentially, the wand is an

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

217

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

electrical probe which may be placed in contact with the conductor transmitting a
signal, related to a section of software. The occurrence of this signal is then used to
cause the structure spy to store the address it is currently monitoring. Such values may
then be either printed out or marked on the structure map. Event correlation on SAS is
executed by using the WO and WZ commands.

(v) Structure comparison. SAS has two structure tables the contents of which may be
compared, the results providing a list of branch vectors and events which are either
equal or not equal.
AND operator. The AND operator, AO, compares the contents of a reference structure
table to an operation structure table. Vectors which are in the operation table and not
the reference table are set to zero.
EXOR operator. This algorithm, EO, compares the contents of two structure tables, a
reference and operation table. Vectors which appear in both tables are nulled in the
operation table.

3. SAS application

3.1 Measurement considerations

The application of SAS is affected by the type of hardware and software technology
incorporated into the computer system it is intended to measure. The main application
considerations, quantitized from the SAS perspective, are therefore discussed.

3.1.1 Hardware. The program counter on modern digital computing machines consists
of either a set of discrete logic integrated circuits or is integrated into a VLSI device
(Osbourue & Kane, 1978; ERA, 1979a, b; Healey, 1979). Discrete program counter
chip sets are now mainly found in mini and mainframe computers where speed is a
primary concern, whilst VLSI circuits dominate the microcomputer, embedded
computer and instrumentation areas. Probes may be readily attached to discrete
program counter integrated circuits, whilst VLSI devices present problems due to
inaccessibility of their program counters. VLSI circuits may be considered as belonging
to one of two groups. The first and largest group, microprocessors, are CPUs which
usually do not contain any integral memory elements with the exception of registers.
The second group—microcomputers and controllers—are CPUs with integral memory
and sometimes I/O channels such as A/D conversion devices. As microprocessors
require external memory elements, their memory address lines are always available for
probing. In contrast, microprocessor circuits contain integral memory and rarely have
their associated memory address lines externally available and are therefore unsuitable
for monitoring by SAS. The majority of microprocessors provide qualificatory signals
to indicate instruction cycle fetches (see Table I) and where these are provided, they are
used to gate the memory bus data to provide an effective program counter. As
described earlier, where no instruction cycle qualificatory signals are provided, window
operations may be used to isolate the relevant data.

3.1.2 Software. Programs may be written in a number of different languages the
characteristics of which occupy a spectrum from those low level languages which
reflect the computing machine’s architecture to high level languages whose affinity is
to the problem (Mclntine, 1978; Calingaert, 1979). The program environment may vary
from a simple single program situation common to many microprocessor and
embedded systems to complex multiprogrammed, timeshared and paged systems found
in large data processing systems (Anderson, 1981). The present configuration of SAS is
designed to monitor the execution of single program systems machine coded from
either a compiler, assembler or by hand, common to instrumentation, embedded and
engineering applications.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

218

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Table 1

Microprocessor Manufacturer No. of bits No. of pins
Instruction cycle qualifying pins
No. Name

8080A Intel 8 40 18, 19, 20, 21 STO-ST3
8085A Intel 8 40 From data bus during T2
Z8OA Zilog 8 40 29, 33 SO, SI
MC6800 Motorola 8 40
MCS6502 MOS Tech. 8 40 7 SYNC
2650A Signetics 8 40
CDP18O2O RCA 8 40 6, 5 SCO, Sd

SC/MP Nat. Semi. 8 40
From data bus at beginning of input
cycle

TMS99SO Texas Inst. 8 40 3 AQ
1M6100 Intersil 12 40 36 IFETCH
1NS8900 Nat. Semi. 16 40
CP1600 Gen. Inst. 16 40
TMS9900 Texas Inst. 16 64 7 IAQ
TMS9995 Texas Inst. 16 40 16,20 IAQ, MEMEN
8086 Intel 16 40 26, 27, 28 SO-S2
Z8002 Zilog 16 40 21, 20, 19, 18 STO-ST3
z000l Zilog 16 48 23, 22, 21, 20 STO-ST3
9440 Fairchild 16 40 6, 8 00, 01
F100-L Ferranti 16 40 4 IR2

3.1.3 Speed. A feature of the structure extraction technique is that the sequence of nodal branch
data acquisition is irrelevant as structural data is independent of execution sequence. Thus, if
the monitored program forms a closed loop, as is the case with most embedded or real time
control systems, the instruction address register can be statistically sampled rather than traced
in real time without incurring loss of structural data. This means that the monitoring system can
be of slower speed than the monitored system.

3.2 An example application: Location of the hexadecimal word output routine XOP 10
associated with the Texas Instruments TM990/101-1 and TM990/401-3 microcomputer and
monitor.

Using SAS there are two principal methods which may be used to determine the memory
position of XOP 10. For clarity any interaction with XOP 12 is ignored.

(i) The first method entails writing two trivial programs, one which includes XOP 10, the
second which is identical except that it does not contain XOP 10. These programs are
shown in Figure 8(a, b). Note that NOP, no operation, is used to replace
XOP 10.
The procedure then is:

a) Run the program which includes XOP 10 [see Figure 7];
b) use command AO to collect the vectors generated from the execution of program (a)

in structure table 1 [see Figure 7(c)];
c) run the program which does not contain XOP 10 [see Figure 7(b)];
d) use command AO to collect the vectors generated from the execution of program (b)

in structure table 2 [see Figure 7(d)];
e) use command EO to eliminate vectors from structure table 1 which are also present

in structure table 2 [see Figure 7(e)];
f) sort the vectors in structure table 1 using the SV command;
g) list the vectors in structure table 1 using command LV [see Figure 7(1)].

The listed vectors provided by step e reveal the position of XOP 10 to be >0348 to >036A.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

219

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

(ii) The second method requires only the program containing the XOP to be run then,
by appreciating that to execute this XOP the microcomputer will have to execute a
branch of greater magnitude than that present in the program, a simple window filter
is used to reveal the required XOP vectors.
The procedure is:

a) Run the program which includes XOP 10 [see Figure 7(a)];
b) use command AO to collect the vectors generated from the execution of

program (a) in structure table 1 [see Figure 7(g)];
c) use the magnitude operator, MO, to eliminate vectors of a smaller

displacement magnitude than the length of the program in structure table 1
[see Figure 7(h)];

d) sort the vectors in structure table 1 using the SV command;
e) list the vectors in structure table 1 using command LV [see Figure 7(i)].

Again inspection of step (d) reveals that the position of XOP 10 is at >0348 to
>036A. A pictorial impression of the program’s dynamic activity could be obtained
by using the display vector command, DV, which clearly shows the branch to the
subroutine XOP 10 [see Figure 7(j)]. Information regarding the positions of the
programs could then have been obtained by using command DM to calibrate the
structure map. Finally, with prior knowledge that the XOP in question resided
somewhere in the system EPROM >0 to >7FF a simple window acquisition, WA, of
this area would have also located the routine in question.

FEOO 0300 LIMI >0000 Interrupt
FEO2 0000
FEO4 02E0 LWPI >FESO Workspace
FEO6 FESO
FEO8 020C LI R12,>0080 CRU, main serial port
FEOA 0080
FEOC 0201 U Rl,>0000 Output data
FEOE 0000
FE1O 2E81 XOP Ri, 10 Output four hex. characters
FE12 lFi5 TB 21 Has key been pressed?
FE14 16FD JNE >FEIO No, continue
FEI6 0460 B @>‘0080 Yes, GOTO monitor
FEI8 0080

Figure 7(a). Test program with XOP.

FEOO 0300 LIMI >0000 Interrupt
FEO2 0000
FEO4 02E0 LWPI >FE8O Workspace
FEO6 FE8O
FEO8 020C LI R12,>0080 CRU, main serial port
FEOA 0080
FEOC 0201 LI R1,>0000 Output data
FEOE 0000
FE1O 1000 NOP Dummy instruction
FE12 1F15 TB 21 Has key been pressed?
FE14 I6FD JNE >FEIO No, continue
FEI6 0460 B @>0080 Yes, GOTO monitor
FE18 0080

Figure 7(b). Test program without XOP.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

220

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Source Destination
FEI4 FEIO
036A FE12
FE14 FE1O
0358 035E
FEIO 0348
0368 034E
0358 035E
0368 034E
036A FEI2
0368 034E

Source Destination
FEI4 FE1O
FE14 FE1O

FEI4 FE1O
FE14 FE1O
FE14 FEIO
FE14 FE1O
FE14 FE1O
FE14 FE1O
FEI4 FE1O
FE14 FEIO

Source Destination
0000 0000
036A FEI2
0000 0000
035B 035E
FEIO 0348
0368 034E
0358 035E
0368 034E
036A FE12
0368 034E

Source Destination Frequency
0358 035E 0002
0368 034E 0003
036A FE12 0002
FEIO 0348 0001

Source Destination
0000 0000
0000 0000
FEIO 0348
0000 0000
0000 0000
036A FE12
0000 0000
0000 0000
0000 0000
036A FE12

Source Destination
0368 034E
0368 034E
FEI0 0348
0358 035E
FE14 FEI0
036A FE12
0368 034E
0358 035E
FE14 FE10
036A FE12

Source Destination Frequency
035A FEI2 0002
FEIO 0348 0001

Figure 7(c). Structure table 1 after

acquisition of vectors from program (a).

Figure 7(e). Vectors present in both structure

tables are eliminated from structures table 1

leaving only vectors associated with the XOP.

Figure 7(d). Structure table 2 after

acquisition of vectors from program (b).

Figure 7(f). Sorting the vectors makes it easier

to identify the lowest and highest XOP routine

values 0348, 036A which represent the entry

and exit points.

Figure 7(g). Structure table 1 after

acquisition of vectors from program (a).

Figure 7(h). Structure table 1

after application of MO=30.

Figure 7(i). The contents of

structure table 1 sorted and listed

using commands SY and LV.
Figure 7(J) The dynamic structure map of

program (a) as presented on the system display.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

221

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

4. Conclusion

Program maintenance dominates the cost associated with the software life cycle. Research in
this area and that of program execution monitoring is sparse. Escalating software costs make
the research for new tools to increase software productivity increasingly urgent. The majority of
existing hardware tools place an emphasis on program debugging and often either are very
specialized or require the programmer to possess detailed knowledge of the machine to apply or
interpret the results. In contrast, SAS is concerned with monitoring, analysing and presenting
fundamental program properties which address program design and maintenance rather than
debugging. It achieves this criterion by using a universal hardware technique to extract the
dynamic structure of the software. A method based on directed graphs is used to provide a
display particularly suitable for small instrument screens. It is proposed that such techniques
could either be integrated into a new generation of logic analysers or as part of a universal test
tool for computer programmers.

References	
Allison, A. 1980. Follow three simple rules to improve software productivity. EDN, March,
167-171.
Anderson, D. A. 1981. Operating systems. IEEE Computer, June, 69-82.
Antoine, 3. M., Decaesteke, P. & Wallstein, R. 1979. Effective software debugging using a
program tracer. Electrical Communication, 54(2), 111-114.
Armbruster, C. E., Duke, A. H. & Dunbar, R. G. 1978. Hardware Sampler for system
measurement. IBM Technical Disclosure Bulletin, 21(4), September, 1427-1429.
Boehm, B. W. 1976. Software engineering. iEEE Transactions on Computers, December,
1227-1241.
Calingaert, P. 1979. Assemblers, Compilers and Program Translation. London: Pitman.
Electrical Research Association 1979a. Microprocessors: Their Development and Application.
ERA Technology.
Electrical Research Association (b) 1979b. The Engineering of Microprocessor Systems.
Oxford: Pergamon Press.
Fryer, R. E. 1973. The memory bus monitor. AFIPS Conference Proceedings, National
Computer Conference, 42, 75-79
Gries, D. 1980. Current ideas in programming methodology. In Research Directions in
Software Technology, (P. Wegner, ed.), pp. 255-275. Amsterdam: North Holland.
Healey, M. 1979. Minicomputers and Microcomputers. London: Hodder and Stoughton.
Jensen, R. W. 1981. Structured programming. IEEE Computer, March, 31-48.
Krumrnel, L. 1977. Advances in microcomputer development systems. IEEE Computer,
February, 13-19.
Lemon, L. M. 1979. Hardware system for developing and validating software. Proceedings of
13th Asilomer Conference on Circuits, Systems and Computers, Pacific Grove California USA,
5-7 November, pp. 455-459.
Lloyd, R., Ovies, H., Rosado, 3. L. & Wilson, D. 3. 1980. Programmable map and trace
instrument. IBM Technical Disclosure Bulletin, 2.3(5), 2075-2078.
Marshall, I. S. 1978. Logic analysers provide an essential real-time view of digital system
activity. Proceedings of MIDCON Technical Conference, Dallas, USA, 12-14 December, pp. 3
1-34.
McCabe, T. 3. 1976. A complexity measure. IEEE Transactions on Software Engineering, SE-
2(4), 308-320.
McCabe, T. 3. 1978. Software complexity measurement. Proceedings of 2nd Software Life
Cycle Management Workshop, Atlanta, USA, 21-22 August, pp. 186-190.
Mclntine, T. C. 1978. Software Interpreters for Microcomputers. New York: John Wiley. Mills,
H. D. 1980. Software development. In Research Directions In Software Technology (ed. P.
Wegner), pp. 87-105. Amsterdam: North Holland.

Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London)

222

SAS‐a software analysis system (Victor Callaghan, Keith Barker)

Munson, 3. B. 1981. Software maintainability, practical concern for life cycle costs. IEEE
Computer, November, 103-109.
Nutt, G. 3. 1975. Tutorial, computer system monitors. IEEE Computer, November, 51-61.
Osbourne, A. & Kane, 3. 1978. An Introduction to Microcomputers Vol. 2, Some Real
Microprocessors. California: Osbourne and Associates Inc.
Plattner, B. & Nievergelt, 3. 1981. Monitoring program execution—a survey. IEEE Computer,
November, 76-93.
Schindler, M. 1981. Software, technology forecast. Electronic Design, January, 190—199.
Stockham, T. G. 1965. Some methods of graphical debugging. Proceedings of IBM Scientific
Computing Symposium on Man Machine Communication, pp. 57-71.
Thornton, C. 1q80. How to get the best performance from your system. Data Processing,
January, 29-32.
Williams, G. 1981. Structured programming and structured flowcharts. BYTE, March, 20-34.

