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This paper describes an experimental microprocessor-based tool, SAS (Software Analysis 
System), which has been developed to enable dynamic program structure acquisition and 
analysis to be made on digital computing machines. 

The system uses a universal hardware extraction technique to obtain branch vectors 
which are used to analyse and display the structure of the software being monitored. A 
display, especially designed for small instrument screens, is used to present this structure. 
Emphasis has been directed towards development of methods with high degrees of 
machine independence and it is envisaged that such techniques could either be integrated 
into the new generation of logic analysers or form part of a universal tool for computer 
programmers. Initial research has been guided towards the application of these techniques 
to compiled, assembled, or machine coded systems and in this context a number of 
techniques are described. 

The motivation for this research has been provided by the present escalating software 
costs, in particular those in post development which account for approximately 75% of the 
total software expenditure. 

 

1. Introduction 
 
Software is presently dominating the cost of computing systems. The price of computer 
hardware is falling at a rate of approximately 28 % p.a. whilst programmer productivity is 
rising at only 4-7% p.a. This indicates an escalating dominance of software costs on computer 
systems (Allison, 1980) (see Figure 1). The software demand growth rate is estimated to be in 
the order of 21-23% p.a. whilst the software labour force and its productivity per individual are 
producing a combined growth rate of only 11.5-17% p.a. (Boehm, 1976). 
 

 
Figure 1. Life-cycle costs of computer systems. 
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Recent American government figures indicate that, if this trend continues, by 1990 there will be 
a shortage of between 1-2 million programmers (Schindler, 1981). One solution to this problem 
would be to substantially raise the level of programmers’ productivity. It is this environment 
which is motivating the research for new tools and techniques to assist the programmer in his 
efforts throughout the software life cycle. 
 
1.1 Software life cycle 
 
The life cycle of a program may be envisaged as comprising two stages; namely, development 
and maintenance. Software development accounts for approximately 25% of the total cost, the 
remainder being attributed to maintenance (Mills, 1980). An estimate of the order of 
expenditure involved is provided by Boehm who reckoned that the annual cost of software in 
the United States during 1976 was some 20 billion dollars (Boehm, 1976). 
 
1.2 Software maintenance 
 
The term ‘maintenance’ (Munson, 1981) is misleading because when used in this context, it 
refers to the following post-delivery activities defined by Swanson (Munson, 1981; Swanson, 
1976) as: 
 

(i) Corrective—fixing a pre-existing error (in either specification or code). 
(ii) Adaptive—modifying the software to accommodate environment change. 
(iii) Perfective—improving or augmenting the performing capabilities. 

 
Boehm (1976) has defined maintenance as ‘the process of modifying existing operational 
software whilst leaving its primary functions intact’. These post-delivery activities usually 
continue for considerably longer periods than their corresponding development time thus 
accounting for the high maintenance overheads. Reducing any of the activities defined by 
Swanson can thus potentially have a profound influence on software expenditure. 
Unfortunately, as Boehm (Boehm, 1976) has stated ‘Despite its size, software maintenance is a 
highly neglected activity’. SAS has been constructed to address the problem of maintenance by 
providing a tool which can counter the programmers’ intrinsic intellectual limitations (Gries, 
1980) by, in the first instance, restricting software complexity and enforcing adherence to 
structural constructs during software development and quality assurance checks and, in the 
second instance, supporting maintenance by providing an aid for deciphering poorly 
documented or complex code. 
 
1.3 Present technology 
 
The main impetus for innovation and development of program execution monitoring tools has 
been provided by companies with a commercial interest (Marshall, 1978). Results of such 
research usually manifest themselves in marketed products. Reported research is sparse; a fact 
supported by a recent survey (Plattoer & Nievergelt, 1981) which reports, ‘program execution 
monitoring has been a neglected research topic’ and concludes by stating ‘program execution 
monitoring has not received attention commensurate to its practical importance'. 
 
1.3.1 Commercial systems. Commercially available tools which provide facilities for program 
execution monitoring are; (1) performance monitors, (ii) logic analysers and (iii) development-
emulation systems. 

Performance monitors (Nutt, 1975) are normally used on computer systems which 
manage such facilities as multi-user, virtual storage and multiprogramming. They gather and 
analyse information concerning the monitored system by either timing or counting the 
occurrence of specific events or conditions. Activities monitored by these systems include CPU 
activity, channel activity and I/O activity. Analysis of this data is then used to (i) investigate 



Journal of Microcomputer Applications (1982) 5, 209-223, Academic Press Inc. (London) 

211 
 
SAS‐a software analysis system (Victor Callaghan, Keith Barker) 

resource utilization, (ii) determine the characteristics of the job load, (iii) remove bottlenecks 
and (iv) tune software and gather data for system monitoring. Due to the large quantity of data 
produced by these systems, the information is normally gathered and presented statistically. 
These tools are usually used on large systems and cost in the region of £40,000 to £150,000. 

Logic analysers (Marshall, 1978) are tools which log absolute time sequential data 
present on a number of parallel channels. Data acquisition may usually be started on the 
occurrence of a pre-specified combinational trigger and continues until the analyser memory is 
full. Data is normally displayed either as a timing diagram, state map or as a table. A current 
trend by manufacturers is the adaptation of logic analysers to directly support program 
development by including facilities such as disassemblers. Typically, a logic analyser may 
contain 24 channels, a memory depth of 256 words, an operating speed of 100 MHz and cost 
between £4000-£8000. 

Development systems and hardware emulators (Krummel, 1977) include facilities such 
as dynamic tracing and breakpoint execution to aid program development and debugging. 
Although many systems implement these features in software, some systems, particularly 
emulators, provide hardware for this purpose. Professional development and emulation systems 
cost in the region of £5000 to £25,000. 
 
1.3.2 Research activities. Research activities concerned with program execution monitoring are 
reported in an early paper by Stockham (Stockham, 1965) and a recent paper by Plattner & 
Nievergelt (1981). Fryer (1973) has described a dumb system, ‘The Memory Bus Monitor’ 
which utilizes the stream of addresses and data travelling the memory bus in conjunction with 
hardware comparators, timers and counters. These provide such measures as branch ratio, 
routine timing and variable behaviour. An eight-word shift register provides a limited trace 
facility. Lemon (1979) describes an improved version of the monitor, ‘SOVAC’, which uses a 
PDP-l 1/34 to support a graphic terminal, simplify the user interface and provide an analysis 
capability. IBM’s recent reports have described a ‘Programmable Map and Trace Instrument—
PMATI’ (Lloyd et a!., 1980) and a ‘Program Counter Sampling Tool’ (Armbruster et al., 
1978). PMATI maps and traces program execution by interfacing to the system address bus. 
The trace function records the sequential stream of address whilst the mapping facility is 
implemented by associating a bit with each possible address occurrence. The program counter 
sampling tool periodically samples the instruction counter and increments a counter associated 
with a window which the value of the program counter lies between. The window widths and 
address space coverage are variable whilst the number of counters and windows is fixed at 
4096. In applications where the loss of time sequential data is not of significance an advantage 
of increased sampling periods may be achieved by use of this technique. A debugging tool ‘The 
Program Tracer’ (Antoine et al., 1979) interfaces to the system address, data and control buses. 
Upon triggering it ‘selectively acquires data from the monitored buses according to a set of 
initialization conditions. The selective acquisition capability both differentiates it from, and 
provides a sizeable data reduction over the conventional logic analysis techniques. Results are 
presented as text on either a printer or VDU. Versions for tracing the ITT 3202, Intel 8085 and 
the RCA 1802 processors have been reported. 
 
1.3.2 Summary. The majority of these tools and techniques use the monitored system's buses to 
extract direct program execution data in the form of real time traces. As such, they are 
primarily debugging tools. Performance monitors extract indirect data concerning the effects of 
the program execution from various system test points and perform analysis to produce certain 
measures on characteristics of the software. SAS differs from these tools by directly extracting 
a fundamental structural program property, performing analysis and presenting the programmer 
with data concerning the program’s complexity and structure. 
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2. The SAS system 
 

2.1 Physical description 
 

SAS consists of a cabinet which houses two single sided, double density 8 in. disc drives, a 
power supply, cooling unit and a 12-slot rack containing: 

(i) a CPU board; 
(ii) a disc controller board; 
(iii)  two structure table RAM boards; 
(iv) an EPROM system software board; 
(v) a structure monitor board; 
(vi) a control board. 

 

System peripherals include a VDU, a printer, a colour monitor and a data acquisition probe set. 
 

2.2 Principle of operation 
 

Figure 2 shows a block diagram of the SAS system. The personality adaptor interfaces the 
program counter or memory address lines of the system under test to the structure monitor 
which extracts branch vectors. These vectors are stored in one of two memory blocks, structure 
tables 1 and 2, which in turn may be operated upon, displayed, or stored on the system discs. 
 

2.2.1 Structure acquisition principle. The technique to be described is based upon the principle 
that branches in compiled and assembled code correspond directly to deviations from the 
normal sequential incrementation process of the program counter. Dynamically executed 
branches can therefore be logged during program execution by storing two words which 
correspond to the value of the program counter immediately prior and following a non-
incrementally sequential update. It is then possible to reconstruct the structural properties of the 
executing program in the form of a directed graph from the table. 
 

 
Figure 2. Schematic Diagram of SAS. 
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Figure 3 shows a block diagram of the structure acquisition scheme. A probe unit is connected 
to the program counter chip set, computer backplane or a microprocessor, depending on 
availability. These probes fetch the program counter outputs including clock qualificatory 
signals through line driving and receiving circuits to the structure monitor. In the structure 
monitor the successive addresses are clocked into a two-bit shift register which enable the time 
adjacent values of the instruction address register to be analysed for a branch by the succeeding 
circuitry. Analysis of branch conditions is performed by comparing the shift register word 
corresponding to the instruction address register’s latest value to its former value plus one. An 
inequality in this comparison indicates that a branch has taken place and a sequence is initiated 
which causes the two non-sequential values of the program counter to be stored in a memory-
based structure table. 

 
Figure 3. Structure acquisition scheme 

 

2.2.2 Structure display principle. The technique utilized to display the program’s dynamic 
structure is based upon a directed graph and has been particularly devised for use in 
conjunction with small instrument display screens. Essentially it is a circle, the circumference 
of which is calibrated to correspond to the portion of memory being monitored. Branches in the 
program’s normal sequential flow are depicted as chords on the circle. A clockwise rotation 
corresponds to the normal positive sequential incrementation process of the program counter. 
On a colour display the chords are colour coded to indicate the direction of the branch, the 
execution frequency being impressed as the intensity of the chord. Figure 4 illustrates a 
measurement being made on a Texas Instruments TM990/101 which has a simple program 
containing three loops, two of which are nested and a subroutine call. 
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Figure 4. Structure map 
 
2.2.3 Structure analysis principles. SAS provides a set of software-implemented algorithms 
which augment the hardware-based acquisition and display system by providing a means of 
testing, modifying and presenting the acquired branch vectors in a manner which may be 
readily interpreted. 
 
1 AC Analyse Complexity 35 FO Frequency Operator 
2 AO And Operator 36 GP Get Program 
3 AZ Acquisition on Zero 37 G1 Get 1st Structure Table 
4 AO Acquisition on One 38 G2 Get 2nd Structure Table 
5 CB Colour Bar Generator 39 LV List Vectors 
6 CD Continuously Display Vectors 40 MA Magnitude Acquisition 
7 CM Clear Memory 41 MO Magnitude Operator 
8 CP Continually Print TM990 Vectors 42 PC Program Cru Bits 
9 CS Clear Screen 43 PE Print Expansion Parameters 
10 CT Configure TM990 Personality Card 44 RE Reset Expansion 
11 DC Draw Circle 45 RI Retrieve Image 
12 DD Disc Directory 46 RM Return to Monitor 
13 DI Display Image 47 SB Star Burst 
14 DM Display Mark 48 SC Set Colour Table 
15 DO Data Operator 49 SV Sort Vectors 
16 DP Dump Program 50 TM Test Memory 
17 DV Display Vectors 51 TO Texas Operator 
18 D1 Dump 1st Structure Table 52 TW Transfer Word Block 
19 D2 Dump 2nd Structure Table 53 WA Window Acquisition 
20 ED Expand Display 54 WL Wandering Line 
21 EO ExOr Operator 55 WO Window Operator 
22-33 E 'x' Execute Program at F'x' 00 56 WZ Wand Zero Acquisition 
34 FD Format Disc 57 WO Wand One Acquisition 

Figure 5. SAS Command Index 
 
A complete list of SAS commands and algorithms is provided in Figure 5. These commands 
may be divided into three classes, namely, test, control and operator commands. Test 
commands are concerned with verifying various functional elements in SAS itself such as the 
structure tables and display (e.g. TM, SB). Control commands supervise the acquisition, 
movement, storage and display of data within SAS (e.g. DP, DV). Operator commands are 
responsible for analysis of the data usually operating on data stored in the structure tables. 

The structure tables are the nucleus of the analysis system (see Figure 6). All data which is 
communicated to the user is obtained directly from the structure tables. Data intended to be 
ignored by SAS or the user is nulled in these tables. This principle is utilized by the analytical 
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routines which null the vectors in locations which have been either eliminated or made 
redundant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The structure tables are the nucleus of the software 
 
Five main analysis techniques are employed in SAS which are described in the following 

paragraphs. 
(i) Vector magnitude, frequency and window filtering. Filtering in the SAS context, refers 

to the elimination of branch vectors which do not conform to prescribed conditions. 
Two types of filtering process are employed in SAS; pre-storage and post-storage. Pre-
storage filters examine and eliminate, if necessary, the branch vectors as they are 
acquired before storage. They can be implemented in either hardware or software. Post-
storage filters process the branch vectors stored in the structure tables, eliminated 
vectors being set to zero. Data null vectors are ignored by the output processors of 
SAS.  
Magnitude filtering. These algorithms such as MA (pre-storage), and MO (post-
storage) determine the magnitude of each vector and compare this to a magnitude 
window supplied by the user. Vectors with a magnitude not between the limits set by 
the window are nulled. 
Frequency filtering. Frequency filtering refers to the elimination of vectors from a 
specified table whose frequency of occurrence lies outside the boundaries of a window 
supplied by the user. Intrinsically, frequency filtering can be only of a post storage 
nature, as pre-storage implementation would imply prior knowledge of vectors yet 
ungenerated. An example of this filter is the FO algorithm. 
Window filtering. The elimination of vectors whose source or destination lies outside a 
user specified window is referred to as window filtering. WA is a pre-storage 
implementation of this algorithm whilst WO is a post-storage version. 

(ii) Complexity and structure analysis. Computer programs may be assembled using 
arbitrary control structures. SAS extracts the branch vectors dynamically from the 
program whilst it is running and uses them to fabricate a diagram which mirrors the 
program structure. The freedom allowed in being able to use arbitrary control 
constructs can lead to the production of highly complex programs which are difficult to 
understand, maintain, adapt and test. To combat this type of complexity, a methodology 
which allows the programmer to build programs from only a limited set of structures is 
often adopted. This type of methodology is already in frequent use amongst high level 
language programmers who commonly use the three constructs; linear sequence, 
selection and iteration (Jensen & Williams, 1981). Unlike high level languages whose 
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algorithmic implementations are based on the virtual machine reflected by the 
language, low level assembly languages’ algorithmic implementations depend on the 
actual machine. As such the use of GOTOs or absolute branches is unavoidable in all 
but trivial assembly or machine code programs. Further, it is felt to gain many of the 
intrinsic advantages of particular machines a more flexible structuring criterion is 
required. The approach on SAS is to allow the user the ultimate choice of which 
structure criteria is appropriate to apply by placing the structure analysis routines in 
RAM which is supported by the system discs and called by the EF command. A 
measure of the conformity of a program to specified constructs is presented as the 
number of instances in which these programming constructs are violated. 

Predicate branching in the control flow of computer programs can potentially create 
control structures which are beyond the management intellect of program development, 
maintenance and adaption engineers (Gries, 1980, Mills. 1980). Forward predicate 
branching causes the number of distinct control paths to increase in proportion to 2 
where n is the number of predicates, whilst backwards branching, can cause an infinite 
number of potential paths. Thus, even small programs may contain a number of control 
paths which is beyond the normal intellectual capacity of an individual (Gries, 1980). A 
measure for this type of complexity has been devised by Thomas McCabe (1976, 1978) 
and is known as cyclomatic complexity. This approach uses the cyclomatic number 
derived from graph theory as a measure. The cyclomatic number is the number of 
independent paths existing within a program module which, when taken in 
combination, generate all paths and is expressed as: 
 

V(G)=e—n+2p 
where 

V(G) x cyclomatic number (complexity measure); 
e = number of edges (branch vectors); 
n = number of vertices (branch vector nodes); 
p = number of connected components (modules). 

 
McCabe suggests a limit of 10 as representing an optimum level of complexity. This 
algorithm is called on SAS by the command AC.  
 

(iii) Instruction, data separation. A need to separate program data from instruction 
addresses occurs in two main instances; program counter tracking which contains data 
words embedded in the program memory field and composite instruction- data tracking 
which gather data fields from both inside and outside the program memory area. The 
latter situation would arise if measurements were made on a microprocessor without 
instruction fetch cycle qualifying signals, whilst the former occurs on systems with 
such signals. Program counter tracking systems effectively branch around data blocks 
producing pseudo branch vectors which are not part of the program logic flow. Some 
processors treat the additional words in multiple word instructions as data words, thus 
inducing pseudo branch vectors. These false branch instructions are eliminated by 
using the ‘not instruction fetch’ qualifying signal to produce a data track and negating 
branch vectors, which correspond to these data domains. Composite instruction-data 
tracking results in the generation of mixed data fields and instruction branch vectors. 
Intrinsically, this system eliminates the multiple instruction word pseudo branch 
problem encountered in the former case. The most successful solution to separating the 
instruction and data activity is to window filter the program memory area, the 
disadvantage being that this requires some prior knowledge of the program being run. 
This data operation is called by the SAS command DO. 

(iv) Event correlation. A requirement to correlate sections of code with certain events is 
evident when programs are being maintained or adapted, in particular when 
accompanying documentation is either not available or inadequate. In such 
circumstances, the correlation wand of SAS may be used. Essentially, the wand is an 
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electrical probe which may be placed in contact with the conductor transmitting a 
signal, related to a section of software. The occurrence of this signal is then used to 
cause the structure spy to store the address it is currently monitoring. Such values may 
then be either printed out or marked on the structure map. Event correlation on SAS is 
executed by using the WO and WZ commands. 

(v) Structure comparison. SAS has two structure tables the contents of which may be 
compared, the results providing a list of branch vectors and events which are either 
equal or not equal. 
AND operator. The AND operator, AO, compares the contents of a reference structure 
table to an operation structure table. Vectors which are in the operation table and not 
the reference table are set to zero. 
EXOR operator. This algorithm, EO, compares the contents of two structure tables, a 
reference and operation table. Vectors which appear in both tables are nulled in the 
operation table. 
 

3. SAS application 
 
3.1 Measurement considerations 
 
The application of SAS is affected by the type of hardware and software technology 
incorporated into the computer system it is intended to measure. The main application 
considerations, quantitized from the SAS perspective, are therefore discussed. 
 
3.1.1 Hardware. The program counter on modern digital computing machines consists 
of either a set of discrete logic integrated circuits or is integrated into a VLSI device 
(Osbourue & Kane, 1978; ERA, 1979a, b; Healey, 1979). Discrete program counter 
chip sets are now mainly found in mini and mainframe computers where speed is a 
primary concern, whilst VLSI circuits dominate the microcomputer, embedded 
computer and instrumentation areas. Probes may be readily attached to discrete 
program counter integrated circuits, whilst VLSI devices present problems due to 
inaccessibility of their program counters. VLSI circuits may be considered as belonging 
to one of two groups. The first and largest group, microprocessors, are CPUs which 
usually do not contain any integral memory elements with the exception of registers. 
The second group—microcomputers and controllers—are CPUs with integral memory 
and sometimes I/O channels such as A/D conversion devices. As microprocessors 
require external memory elements, their memory address lines are always available for 
probing. In contrast, microprocessor circuits contain integral memory and rarely have 
their associated memory address lines externally available and are therefore unsuitable 
for monitoring by SAS. The majority of microprocessors provide qualificatory signals 
to indicate instruction cycle fetches (see Table I) and where these are provided, they are 
used to gate the memory bus data to provide an effective program counter. As 
described earlier, where no instruction cycle qualificatory signals are provided, window 
operations may be used to isolate the relevant data. 
 
3.1.2 Software. Programs may be written in a number of different languages the 
characteristics of which occupy a spectrum from those low level languages which 
reflect the computing machine’s architecture to high level languages whose affinity is 
to the problem (Mclntine, 1978; Calingaert, 1979). The program environment may vary 
from a simple single program situation common to many microprocessor and 
embedded systems to complex multiprogrammed, timeshared and paged systems found 
in large data processing systems (Anderson, 1981). The present configuration of SAS is 
designed to monitor the execution of single program systems machine coded from 
either a compiler, assembler or by hand, common to instrumentation, embedded and 
engineering applications. 
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Table 1 

Microprocessor  Manufacturer  No. of  bits No. of  pins  
Instruction cycle qualifying pins 
No.                       Name  

8080A  Intel  8  40  18, 19, 20, 21      STO-ST3  
8085A  Intel  8  40  From data bus during T2  
Z8OA  Zilog  8  40  29, 33                  SO, SI  
MC6800  Motorola  8  40   
MCS6502  MOS Tech.  8  40  7                          SYNC  
2650A  Signetics  8  40   
CDP18O2O  RCA  8  40  6, 5                      SCO, Sd  

SC/MP  Nat. Semi.  8  40  
From data bus at beginning of input 
cycle  

TMS99SO  Texas Inst.  8  40  3                           AQ  
1M6100  Intersil  12  40  36                         IFETCH  
1NS8900  Nat. Semi.  16  40   
CP1600  Gen. Inst.  16  40   
TMS9900  Texas Inst.  16  64  7                           IAQ  
TMS9995  Texas Inst.  16  40  16,20                    IAQ, MEMEN  
8086  Intel  16  40  26, 27, 28             SO-S2  
Z8002  Zilog  16  40  21, 20, 19, 18       STO-ST3  
z000l  Zilog  16  48  23, 22, 21, 20       STO-ST3  
9440  Fairchild  16  40  6, 8 00, 01  
F100-L  Ferranti  16  40  4                           IR2  

 
3.1.3 Speed. A feature of the structure extraction technique is that the sequence of nodal branch 
data acquisition is irrelevant as structural data is independent of execution sequence. Thus, if 
the monitored program forms a closed loop, as is the case with most embedded or real time 
control systems, the instruction address register can be statistically sampled rather than traced 
in real time without incurring loss of structural data. This means that the monitoring system can 
be of slower speed than the monitored system. 
 
3.2 An example application: Location of the hexadecimal word output routine XOP 10 
associated with the Texas Instruments TM990/101-1 and TM990/401-3 microcomputer and 
monitor. 
 
Using SAS there are two principal methods which may be used to determine the memory 
position of XOP 10. For clarity any interaction with XOP 12 is ignored. 

(i) The first method entails writing two trivial programs, one which includes XOP 10, the 
second which is identical except that it does not contain XOP 10. These programs are 
shown in Figure 8(a, b). Note that NOP, no operation, is used to replace 
XOP 10. 
The procedure then is:  

a) Run the program which includes XOP 10 [see Figure 7]; 
b) use command AO to collect the vectors generated from the execution of program (a) 

in structure table 1 [see Figure 7(c)]; 
c) run the program which does not contain XOP 10 [see Figure 7(b)]; 
d) use command AO to collect the vectors generated from the execution of program (b) 

in structure table 2 [see Figure 7(d)]; 
e) use command EO to eliminate vectors from structure table 1 which are also present 

in structure table 2 [see Figure 7(e)]; 
f) sort the vectors in structure table 1 using the SV command; 
g) list the vectors in structure table 1 using command LV [see Figure 7(1)]. 

 
The listed vectors provided by step e reveal the position of XOP 10 to be >0348 to >036A. 
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(ii) The second method requires only the program containing the XOP to be run then, 
by appreciating that to execute this XOP the microcomputer will have to execute a 
branch of greater magnitude than that present in the program, a simple window filter 
is used to reveal the required XOP vectors. 
The procedure is: 

a) Run the program which includes XOP 10 [see Figure 7(a)]; 
b) use command AO to collect the vectors generated from the execution of 

program (a) in structure table 1 [see Figure 7(g)]; 
c) use the magnitude operator, MO, to eliminate vectors of a smaller 

displacement magnitude than the length of the program in structure table 1 
[see Figure 7(h)]; 

d) sort the vectors in structure table 1 using the SV command; 
e) list the vectors in structure table 1 using command LV [see Figure 7(i)]. 
 

Again inspection of step (d) reveals that the position of XOP 10 is at >0348 to 
>036A. A pictorial impression of the program’s dynamic activity could be obtained 
by using the display vector command, DV, which clearly shows the branch to the 
subroutine XOP 10 [see Figure 7(j)]. Information regarding the positions of the 
programs could then have been obtained by using command DM to calibrate the 
structure map. Finally, with prior knowledge that the XOP in question resided 
somewhere in the system EPROM >0 to >7FF a simple window acquisition, WA, of 
this area would have also located the routine in question. 

 
FEOO  0300  LIMI  >0000  Interrupt  
FEO2  0000     
FEO4  02E0  LWPI >FESO  Workspace  
FEO6  FESO     
FEO8  020C  LI  R12,>0080  CRU, main serial port  
FEOA  0080     
FEOC  0201  U  Rl,>0000  Output data  
FEOE  0000     
FE1O  2E81  XOP  Ri, 10  Output four hex. characters  
FE12  lFi5  TB  21  Has key been pressed?  
FE14  16FD  JNE  >FEIO  No, continue  
FEI6  0460  B  @>‘0080  Yes, GOTO monitor  
FEI8  0080     

Figure 7(a). Test program with XOP. 
 

FEOO  0300  LIMI  >0000  Interrupt  
FEO2  0000     
FEO4  02E0  LWPI >FE8O  Workspace  
FEO6  FE8O     
FEO8  020C  LI  R12,>0080  CRU, main serial port  
FEOA  0080     
FEOC  0201  LI  R1,>0000  Output data  
FEOE  0000     
FE1O  1000  NOP   Dummy instruction  
FE12  1F15  TB  21  Has key been pressed?  
FE14  I6FD  JNE  >FEIO  No, continue  
FEI6  0460  B  @>0080  Yes, GOTO monitor  
FE18  0080     

Figure 7(b). Test program without XOP. 
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Source  Destination  
FEI4  FEIO  
036A  FE12  
FE14  FE1O  
0358  035E  
FEIO  0348  
0368  034E  
0358  035E  
0368  034E  
036A  FEI2  
0368  034E  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 

Source  Destination  
FEI4  FE1O  
FE14  FE1O  
  
FEI4  FE1O  
FE14  FE1O  
FE14  FEIO  
FE14  FE1O  
FE14  FE1O  
FE14  FE1O  
FEI4  FE1O  
FE14  FEIO  

Source  Destination  
0000  0000  
036A  FEI2  
0000  0000  
035B  035E  
FEIO  0348  
0368  034E  
0358  035E  
0368  034E  
036A  FE12  
0368  034E  

Source  Destination  Frequency  
0358  035E  0002  
0368  034E  0003  
036A  FE12  0002  
FEIO  0348  0001  

Source  Destination  
0000  0000  
0000  0000  
FEIO  0348  
0000  0000  
0000  0000  
036A  FE12  
0000  0000  
0000  0000  
0000  0000  
036A  FE12  

Source  Destination  
0368  034E  
0368  034E  
FEI0  0348  
0358  035E  
FE14  FEI0  
036A  FE12  
0368  034E  
0358  035E  
FE14  FE10  
036A  FE12  

Source  Destination  Frequency 
035A  FEI2  0002  
FEIO  0348  0001  

Figure 7(c). Structure table 1 after 

acquisition  of vectors from program (a). 

Figure 7(e). Vectors present in both structure 

tables are eliminated from structures table 1 

leaving only vectors associated with the XOP.

Figure 7(d). Structure table 2 after 

acquisition of vectors from program (b). 

Figure 7(f). Sorting the vectors makes it easier 

to identify the lowest and highest XOP routine 

values 0348, 036A which represent the entry 

and exit points.  

Figure 7(g). Structure table 1 after 

acquisition of vectors from program (a).

Figure 7(h). Structure table 1 

after application of MO=30. 

Figure 7(i). The contents of 

structure table 1 sorted and listed 

using commands SY and LV. 
Figure 7(J) The dynamic structure map of 

program (a) as presented on the system display.
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4. Conclusion 
 

Program maintenance dominates the cost associated with the software life cycle. Research in 
this area and that of program execution monitoring is sparse. Escalating software costs make 
the research for new tools to increase software productivity increasingly urgent. The majority of 
existing hardware tools place an emphasis on program debugging and often either are very 
specialized or require the programmer to possess detailed knowledge of the machine to apply or 
interpret the results. In contrast, SAS is concerned with monitoring, analysing and presenting 
fundamental program properties which address program design and maintenance rather than 
debugging. It achieves this criterion by using a universal hardware technique to extract the 
dynamic structure of the software. A method based on directed graphs is used to provide a 
display particularly suitable for small instrument screens. It is proposed that such techniques 
could either be integrated into a new generation of logic analysers or as part of a universal test 
tool for computer programmers. 
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